Viscoelastic and dynamic nonlinear properties of airway smooth muscle tissue: roles of mechanical force and the cytoskeleton.
نویسندگان
چکیده
The viscoelastic and dynamic nonlinear properties of guinea pig tracheal smooth muscle tissues were investigated by measuring the storage (G') and loss (G") moduli using pseudorandom small-amplitude length oscillations between 0.12 and 3.5 Hz superimposed on static strains of either 10 or 20% of initial length. The G" and G' spectra were interpreted using a linear viscoelastic model incorporating damping (G) and stiffness (H), respectively. Both G and H were elevated following an increase in strain from 10 to 20%. There was no change in harmonic distortion (K(d)), an index of dynamic nonlinearity, between 10 and 20% strains. Application of methacholine at 10% strain significantly increased G and H while it decreased K(d). Cytochalasin D, isoproterenol, and HA-1077, a Rho-kinase inhibitor, significantly decreased both G and H but increased K(d). Following cytochalasin D, G, H, and K(d) were all elevated when mean strain increased from 10 to 20%. There were no changes in hysteresivity, G/H, under any condition. We conclude that not all aspects of the viscoelastic properties of tracheal smooth muscle strips are similar to those previously observed in cultured cells. We attribute these differences to the contribution of the extracellular matrix. Additionally, using a network model, we show that the dynamic nonlinear behavior, which has not been observed in cell culture, is associated with the state of the contractile stress and may derive from active polymerization within the cytoskeleton.
منابع مشابه
Design and Fabrication of a Portable 1-DOF Robotic Device for Indentation Tests
There are many tactile devices for indentation examinations to measure mechanical properties of tissue. The purpose of this paper is to develop a portable indentation robotic device to show its usability for measuring the mechanical properties of a healthy abdominal tissue. These measurements will help to develop suitable mathematical models representing abdominal tissue. A 1-DOF portable robot...
متن کاملModeling the oscillation dynamics of activated airway smooth muscle strips.
When strips of activated airway smooth muscle are stretched cyclically, they exhibit force-length loops that vary substantially in both position and shape with the amplitude and frequency of the stretch. This behavior has recently been ascribed to a dynamic interaction between the imposed stretch and the number of actin-myosin interactions in the muscle. However, it is well known that the passi...
متن کاملProbing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
Complex rheology of airway smooth muscle cells and its dynamic response during contractile stimulation involves many molecular processes, foremost of which are actomyosin cross-bridge cycling and actin polymerization. With an atomic force microscope, we tracked the spatial and temporal variations of the viscoelastic properties of cultured airway smooth muscle cells. Elasticity mapping identifie...
متن کاملNanobiomechanical Properties of Microtubules
Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...
متن کاملThe contractile apparatus and mechanical properties of airway smooth muscle.
The functional properties of airway smooth muscle are fundamental to the properties of the airways in vivo. However, many of the distinctive characteristics of smooth muscle are not easily accounted for on the basis of molecular models developed to account for the properties of striated muscles. The specialized ultrastructural features and regulatory mechanisms present in smooth muscle are like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 290 6 شماره
صفحات -
تاریخ انتشار 2006